RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Squeezing and non-equilibrium dynamics in a multi-component Bose condensate

September 24, 2012 - 12:30pm
Speaker: 
Mike Chapman
Institution: 
Georgia Tech

A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibria and corresponds to an unstable fixed point in the dynamical phase space. In many-body quantum systems, mean-field approximations fail in the vicinity of these points and lead to dynamics driven by quantum fluctuations. In this talk, I will discuss our measurements of non-equilibrium quantum spin dynamics of a spin-1 atomic Bose condensate. The condensate is initialized to a minimum uncertainty spin state corresponding to a unstable (hyperbolic) fixed point of the phase space, and quantum fluctuations lead to non-linear spin evolution along a separatrix. At early times, we measure squeezing in spin-nematic variables up to -8 dB [1]. At longer times, we observe quantum spin mixing characterized by non-Gaussian probability distributions that are in good agreement with exact quantum calculations [2]. These results show that spin dynamics in multi-component condensates provide a powerful tool to generate highly correlated and robust quantum many-body states of the type required for quantum enhanced metrology and continuous variable quantum information processing.

[1] Hamley, C.D., Gerving, C.S., Hoang, T.M., Bookjans, E.M., and Chapman, M.S., Nature Phys.8, 305--308 (2012).
[2] Gerving, C.S., Hoang, T.M., Land, B.J., Anquez, M., Hamley, C.D., and Chapman, M.S., arXiv:1205.2121v1 [cond-mat.quant-gas].

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu