RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Spins and Photons of Quantum Dots

November 28, 2011 - 12:30pm
Speaker: 
Mete Atature
Institution: 
University of Cambridge

Self-assembled semiconductor quantum dots are interesting and rich physical systems. Their inherently mesoscopic nature leads to a multitude of interesting interaction mechanisms of confined spins with the solid state environment of spins, charges and phonons. In parallel, the relatively clean spin-dependent optical transitions make quantum dots strong candidates for stationary and flying qubits within the context of spin-based quantum information science. The recently observed quantum dot resonance fluorescence has become a key enabler for further progress in this context. I will first discuss the real-time optical detection (or single-shot readout) of quantum dot spins, and then I will discuss how resonance fluorescence allows coherent generation of single photons suitable (and tailored) for linear-optics quantum computation and for establishing a high-efficiency spin-photon quantum interface within a distributed quantum network.

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu