RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Deterministic Creation of NOON States in Two Superconducting Resonators

November 15, 2010 - 12:30pm
Speaker: 
John Martinis
Institution: 
University of California, Santa Barbara

The quantum entanglement of two or more degrees of freedom is a key requirement for quantum computation, and has been demonstrated in a variety of spin-like physical systems, ranging from atoms to electronic circuits. These systems share the common trait of very strong nonlinearity, and are used because the nonlinearity allows straightforward quantum control by classical means. Quantum control of linear systems, such as harmonic oscillators, is by contrast significantly more difficult, and has only been achieved using nonlinear intermediaries: Beam-splitters, nonlinear crystals and photon detectors to control traveling optical photons, and atoms, ions and more recently superconducting qubits to control microwave photons and phonons in cavities and resonators. Here we demonstrate a quantum circuit in which a pair of qubits is used to deterministically generate entangled photon states in two microwave resonators. We use as a benchmark the generation of NOON states, with N photons in one resonator and 0 in the other, superposed with the state with the occupation numbers reversed. The resonator states are analyzed using bipartite Wigner tomography required to distinguish entanglement from an ensemble of mixed states.

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu