RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Levitated Spinning Graphene

November 8, 2010 - 12:30pm
Speaker: 
Bruce Kane
Institution: 
University of Maryland, Laboratory of Physical Sciences

I will describe a method for levitating micron-sized few layer graphene flakes in a quadrupole ion trap. Starting from a liquid suspension containing graphene, charged flakes are injected into the trap using the electrospray ionization technique and are probed optically. At micro-torr pressures, torques from circularly polarized light cause the levitated particles to rotate at frequencies exceeding 1 MHz, which can be inferred from modulation of light scattering off the rotating flake when an electric field resonant with the rotation rate is applied. I will present possible applications of these techniques, both to fundamental measurements of the mechanical and electronic properties of graphene and to new approaches to graphene crystal growth, modification and manipulation.

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu