RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Ultra Fast Quantum State Tomography

March 22, 2010 - 12:30pm
Speaker: 
Steve Flammia
Institution: 
Perimeter Institute for Theoretical Physics

Everybody hates tomography. And with good reason! Experimentalists hate it because it is inefficient and difficult. Theorists hate it because it isn't very "quantum." But because of our current lack of meso-scale quantum computers capable of convincingly performing non-classical calculations, tomography seems like a necessary evil. In this talk, I will attempt to banish quantum state tomography to the Hell of Lost Paradigms where it belongs. I hope to achieve this by introducing several methods for learning quantum states more efficiently, in some cases exponentially so. The first method runs in polynomial time and outputs a polynomial-sized classical approximation of the state (in matrix product state form), together with a rigorous bound on the fidelity. The second result takes advantage of the fact that most interesting states are close to pure states to get a quadratic speedup using ideas from compressed sensing. I'll also show simulations of these methods that demonstrate how well they work in practical situations. Both of these results are heralded, and require no a priori assumptions about the state. 

This is joint work with S. Bartlett, D. Gross, R. Somma (first result), and D. Gross, Y.-K. Liu, S. Becker, J. Eisert, (second result; arXiv:0909:3304).

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu