More News
Spin Diagnostics
HighlyCharged Ions
SuperconductingSilicon Qubits
Advanced Light
Frontiers of Cold Matter
Stimulated Mutual Annihilation
JQI Fellow Gretchen Campbell among PECASE awardees
Cold Chaos
UpConverted Radio
How do you build a largescale quantum computer?
Solitary Confinement
JQI at APS
Upcoming Events
People News
Outreach
Recent Publications
Twitter Updates

Read about #quantum Spin Diagnostics t.co/PVhuaXyC6K @UMDResearch @UMDPhysics @sciencemagazine t.co/2qgQWtjemy

FossFeig paper on twoparticle interference in Science t.co/qsTtPqOYxX
People Profiles

Phil Richerme
Phil Richerme is a postdoc in Chris Monroe's Trapped Ion Quantum Information Group. He studies quantum magnetism using a wellcontrolled and wellisolated system of atomic ion spins, realizing Feynman's original proposal for a quantum simulator. These experiments probe the ground state and dynamical evolution of interacting spin systems, which are difficult (or impossible) for classical computers to calculate for even a few dozen spins. Phil received his Ph.D. from Harvard in 2012, working with Gerald Gabrielse and the ATRAP collaboration at CERN to trap antihydrogen atoms for sensitive tests of CPT symmetry.

Alexey V. Gorshkov
Alexey Gorshkov is a JQI fellow and theoretical physicist at NIST. He grew up in Moscow until his parents brought him to Boston when he was in 10th grade. In high school, he was good at math, so that's what he was planning to do in college, but then math ended up being too dry. Physics offered a perfect alternative since it involved lots of interesting mathematics and grappled with problems related to real life.
He attended Harvard for his undergraduate and graduate degrees, obtaining a physics PhD in 2010 studying under Mikhail Lukin. After that he was a postdoctoral fellow at Caltech, working with John Preskill. He won numerous university teaching and research awards during these years.
His research is at the intersection of AMO physics, condensed matter physics, and quantum information science. He has authored dozens of papers and has a patent entitled: “Scalable Room Temperature Quantum Information Processor.”

Mohammad Hafezi
Hafezi is JQI fellow and works at the interface of condensed matter theory and quantum optics. The focus of his research is on theoretical and experimental investigations of artificial gauge fields and topological order in photonics systems. Such systems can be exploited as robust optical devices insensitive to disorder, which is the subject of his NSF Physics Frontier Center’s seed funding program. Moreover, in the presence of strong optical nonlinearity, such systems are expected to exhibit fractional quantum Hall physics, providing a platform for potentially observing anoynic statistics. He received his Ph.D. from Harvard in 2009 where he worked with Mikhail Lukin and Eugene Demler. There, he studied strongly correlated physics in AMO systems. In particular, he worked on the topological characterization of ultracold atoms in 2D and also nonequilibrium dynamics of strongly interacting photons in 1D.

Gretchen Campbell, Fellow
Campbell is a NIST JQI fellow and works in the Laser Cooling and Trapping group. In her atom circuits lab, reserachers probe Na BECs in toroidal traps. The goals of these experiments include studying superfluidity, as well as superfluid analogs to superconducting circuits. A second experiment with ultracold strontium is being built. She received a Ph.D from MIT in 2006, where she worked with Wolfgang Ketterle and Dave Pritchard. There, she used Rb BECs in optical lattices to study atom interferometry, nonlinear atom optics and the superfluid – Mott insulator phase transition. These experiments included the first direct observation of the atomic recoil momentum in dispersive media. More recently, she worked with Jun Ye on precision measurements and frequency metrology with an ^{87}Sr optical lattice clock.

Ryan Barnett
Ryan Barnett, a former JQI postdoctoral fellow at the Condensed Matter Theory Center (CMTC), is now a ‘Lecturer in Condensed Matter Theory’ (UK equivalent of assistant professor) at Imperial College in London. Ryan is a theoretical physicist interested in collective effects in ultracold atomic gases. While at the JQI his research focused on spinor condensates, nonequilibrium dynamics, and synthetic gauge fields. Much of his recent work at CMTC was motivated by ongoing experimental activities at the JQI.

Stephen Powell
Stephen Powell, a former JQI postdoctoral fellow at CMTC, now works at the Nordic Institute of Theoretical Physics or Nordita in Stockholm, Sweden. His research in the group of Sankar Das Sarma centered around strongly correlated systems with a specific focus on frustrated magnetism and ultracold gases. At Nordita, he will continue this line of research, which is at the meeting point of condensed matter and atomic physics. In talking of his postdoctoral experience he says, “Something I've particularly enjoyed about being at JQI is having close contact with various experimental groups here.”
Subscribe to A Quantum Bit
Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...
Sign Up Now
Sign up to receive A Quantum Bit in your email!
Have an idea for A Quantum Bit? Submit your suggestions to jqicomm@umd.edu