RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Latest News and Research

Atomic cousins team up in early quantum networking node
Researchers use different ion species for storage and communication.

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with JQI Fellow Christopher Monroe, are pursuing the second goal, attempting to wire up isolated modules of trapped atomic ions with light. They imagine many modules, each with a hundred or so ions, linked together to form a... Continue Reading

Labs IRL: Boxing up atomic ions
JQI Podcast Episode 14
What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of Labs in Real Life—Labs IRL, for short—a recurring segment on Relatively Certain that will explore what it's actually like to work in a university lab. (The work in this lab... Continue Reading
JQI student awarded NSF Graduate Research Fellowship

In Spring 2017, Jonathan Francisco San Miguel was awarded a National Science Foundation (NSF) Graduate Research Fellowship. This prestigious NSF fellowship recognizes outstanding students in science, technology, engineering and mathematics fields. Since 2014, he has been working on superconducting qubits in JQI Fellow Vladimir Manucharyan's condensed matter physics laboratory. Continue Reading

Tiny magnetic tremors unlock exotic superconductivity

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one way to create superconductivity.But there are other, less common ways to achieve this effect. Scientists from the University of Maryland (UMD), the University of California, Irvine (UCI) and Fudan University have now shown that tiny magnetic tremors lead to superconductivity... Continue Reading

Quantum Thermometer or Optical Refrigerator?
Versatile optomechanical beams have potential applications in biology, chemistry, electronics.

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type of optical shield that diverts heat. .Described in a pair of new papers in Science and Physical Review Letters, the potential applications include chip-based temperature sensors for electronics and biology that would never need to be adjusted since they rely on fundamental constants... Continue Reading

The limits of computation
JQI Podcast Episode 13

Modern computers, which dwarf their forebears in speed and efficiency, still can't conquer some of the hardest computational problems. Making them even faster probably won't change that.

Computer scientists working in the field of computational complexity theory explore the ultimate limits of computers, cataloguing and classifying a universe of computational problems. For decades, they’ve been stuck on a particular nagging question, which boils down to this: What’s the relationship between solving a problem and checking your work?

Chris Cesare teams up with Emily Edwards and QuICS postdoctoral researcher Bill Fefferman to explain what this question entails and how researchers are tackling it with tools...Continue Reading

Tiny tug unleashes cryogenic currents

Researchers have found that a small stretch is enough to unleash the exotic electrical properties of a recently discovered topological insulator, unshackling a behavior previously locked away at cryogenic temperatures.The compound, called samarium hexaboride, has been studied for decades. But recently it has enjoyed a surge of renewed interest as scientists first predicted and then discovered that it was a new type of topological insulator—a material that banishes electrical currents from its interior and forces them to travel along its periphery. That behavior only emerges at around 4 degrees above absolute zero, though, thwarting potential applications.Now, experimentalists at the University of... Continue Reading

Recent JQI grad receives APS policy fellowship

Lauren Aycock, a recent JQI graduate researcher, has been awarded a Congressional Science Fellowship from the American Physical Society.The fellowship, which lasts for one year, aims to provide members of Congress with the scientific and technical expertise of trained scientists. In turn, fellows like Aycock get to learn first-hand about public policy and communicate with Congress on behalf of the scientific community. After an orientation sponsored by the American Association for the Advancement of Science, she will begin working either in a congressional office or on a committee. Continue Reading

Latest News and Research

  • Atomic cousins team up in early quantum networking node
    Researchers use different ion species for storage and communication.

    Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with... Continue Reading

  • Labs IRL: Boxing up atomic ions
    JQI Podcast Episode 14
    What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of... Continue Reading
  • JQI student awarded NSF Graduate Research Fellowship

    In Spring 2017, Jonathan Francisco San Miguel was awarded a National Science Foundation (NSF) Graduate Research Fellowship. This prestigious NSF fellowship recognizes outstanding students in science, technology, engineering and mathematics fields. Since 2014, he has been working on superconducting qubits in JQI Fellow Vladimir Manucharyan's condensed matter physics laboratory. Continue Reading

  • Tiny magnetic tremors unlock exotic superconductivity

    Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one way to create superconductivity.But... Continue Reading

  • Quantum Thermometer or Optical Refrigerator?
    Versatile optomechanical beams have potential applications in biology, chemistry, electronics.

    In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a... Continue Reading

  • The limits of computation
    JQI Podcast Episode 13
  • Tiny tug unleashes cryogenic currents

    Researchers have found that a small stretch is enough to unleash the exotic electrical properties of a recently discovered topological insulator, unshackling a behavior previously locked away at cryogenic temperatures.The compound, called samarium hexaboride, has been studied for decades. But recently it has enjoyed a surge of renewed interest as scientists ... Continue Reading

  • Recent JQI grad receives APS policy fellowship

    Lauren Aycock, a recent JQI graduate researcher, has been awarded a Congressional Science Fellowship from the American Physical Society.The fellowship, which lasts for one year, aims to provide members of Congress with the scientific and technical expertise of trained scientists. In turn, fellows like Aycock get to learn first-hand about public policy and communicate with Congress on behalf of... Continue Reading

People Profiles

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu