RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Latest News and Research

Quantum cycles power cold-atom pump

The idea of a pump is at least as old as the ancient Greek philosopher and scientist Archimedes. More than 2000 years ago, Archimedes allegedly invented a corkscrew pump that could lift water up an incline with the turn of a handle. Versions of the ancient invention still bear his name and are used today in agriculture and industry.Modern pumps have achieved loftier feats. For instance, in the late 1990s, NIST developed a device that could pump individual electrons, part of a potential new standard for measuring capacitance.While pumps can be operated mechanically, electrically or via any other source of energy, they all share the common feature of being...Continue Reading

Novel gate may enhance power of Majorana-based quantum computers

Quantum computers hold great potential, but they remain hard to build because their basic components—individual quantum systems like atoms, electrons or photons—are fragile. A relentless and noisy background constantly bombards the computer’s data. One promising theoretical approach, known as topological quantum computing, uses groups of special particles confined to a plane to combat this environmental onslaught. The particles, which arise only in carefully crafted materials, are held apart from each other so that the information they store is spread out in space. In this way, information is hidden from its noisy environment, which tends to disrupt small regions at a time. Such a computer would perform calculations by moving the particles around one another in a plane, creating...Continue Reading

Christopher Monroe Elected to National Academy of Sciences

University of Maryland Physics Professor Christopher Monroe has been elected to the National Academy of Sciences. Monroe, who is also a Distinguished University Professor, the Bice Zorn Professor of Physics, and a fellow of the Joint Quantum Institute and the Joint Center for Quantum Information and Computer Science, is one of 84 new members and 21 foreign associates elected in 2016. He joins a select group of 2,291 scientists around the country elected by their peers and recognized for their influential research. He is a scientific leader in trapping atomic ions and studying how to use their quantum properties for information processing. Continue Reading

Gretchen Campbell named new JQI Co-Director

JQI Fellow Gretchen Campbell has been named the new NIST Co-Director of the Joint Quantum Institute, effective April 1, 2016. Campbell joined the JQI in 2009 and is also a UMD Adjunct Associate Professor and APS Fellow. In recent years she has received various accolades for her atomtronics research, including the APS Maria Goeppert-Mayer award. Campbell succeeds JQI Fellow Charles Clark, who has held the position since 2011. JQI Fellow Steven Rolston will continue as the UMD Co-Director. Rolston, on behalf of JQI, would like to thank Clark for his service. "I would particularly like to highlight Charles’ leadership and active engagement with the public in the promotion of quantum physics. The JQI will continue to benefit from his dedication." Rolston continues, "Gretchen is an...Continue Reading

Oscillating currents point to practical application for topological insulators

Scientists studying an exotic material have found a potential application for its unusual properties, a discovery that could improve devices found in most digital electronics.Under the right conditions the material, a compound called samarium hexaboride, is a topological insulator—something that conducts electricity on its surface but not through its interior. The first topological insulators were only recently created and demonstrated in labs.Now, a team of physicists at JQI and the University of California, Irvine, may have found a use for tiny crystals of samarium hexaboride. When pumped with a small but constant electric current and cooled to near absolute zero, the crystals can produce a current that oscillates. The frequency of that oscillation can be tuned by changing the amount...Continue Reading

Measuring the magnetization of wandering spins

The swirling field of a magnet—rendered visible by a sprinkling of iron filings—emerges from the microscopic behavior of atoms and their electrons. In permanent magnets, neighboring atoms align and lock into place to create inseparable north and south poles. For other materials, magnetism can be induced by a field strong enough to coax atoms into alignment.In both cases, atoms are typically arranged in the rigid structure of a solid, glued into a grid and prevented from moving. But the team of JQI Fellow Ian Spielman has been studying the magnetic properties of systems whose tiny constituents are free to roam around—a phenomenon called “itinerant magnetism." “When we think of magnets, we usually think of some lattice,” says graduate student Ana Valdés-Curiel. Now, in a new experiment,...Continue Reading

Rogue rubidium leads to atomic anomaly
Unexpected high-energy atoms illuminate the physics of potential quantum processors

The behavior of a few rubidium atoms in a cloud of 40,000 hardly seems important. But a handful of the tiny particles with the wrong energy may cause a cascade of effects that could impact future quantum computers. Some proposals for quantum devices use Rydberg atoms—atoms with highly excited electrons that roam far from the nucleus—because they interact strongly with each other and offer easy handles for controlling their individual and collective behavior. Rubidium is one of the most popular elements for experimenting with Rydberg physics. Now, a team of researchers led by JQI Fellows Trey Porto, Steven Rolston and Alexey Gorshkov have discovered an unwanted side effect of trying to manipulate strongly interacting rubidium atoms: When they used lasers to drive some of the atoms into...Continue Reading

Jay Deep Sau Receives Sloan Research Fellowship

Jay Deep Sau, an assistant professor of physics at the University of Maryland and fellow of the Joint Quantum Institute, was awarded a Sloan Research Fellowship for 2016. This award, granted by the Alfred P. Sloan Foundation, identifies 126 early-career scientists based on their potential to contribute fundamentally significant research to a wider academic community.Sau, a theoretical condensed matter physicist interested in applying topological principles to create protected solid-state and cold-atomic systems for quantum information processing, will use the fellowship to further his research focus on predicting phenomena that could...Continue Reading

Latest News and Research

  • Quantum cycles power cold-atom pump

    The idea of a pump is at least as old as the ancient Greek philosopher and scientist Archimedes. More than 2000 years ago, Archimedes allegedly invented a corkscrew pump that could lift water up an incline with the turn of a handle. Versions of the ancient invention still bear his name and are used today in agriculture and... Continue Reading

  • Novel gate may enhance power of Majorana-based quantum computers

    Quantum computers hold great potential, but they remain hard to build because their basic components—individual quantum systems like atoms, electrons or photons—are fragile. A relentless and noisy background constantly bombards the computer’s data. One promising theoretical approach, known as topological quantum computing, uses groups of special particles confined to a plane to combat this... Continue Reading

  • Christopher Monroe Elected to National Academy of Sciences

    University of Maryland Physics Professor Christopher Monroe has been elected to the National Academy of Sciences. Monroe, who is also a Distinguished University Professor, the Bice Zorn Professor of Physics, and a fellow of the Joint Quantum Institute and the Joint Center for Quantum Information and... Continue Reading

  • Gretchen Campbell named new JQI Co-Director

    JQI Fellow Gretchen Campbell has been named the new NIST Co-Director of the Joint Quantum Institute, effective April 1, 2016. Campbell joined the JQI in 2009 and is also a UMD Adjunct Associate Professor and APS Fellow. In recent years she has received various accolades for her atomtronics research, including the APS Maria Goeppert-Mayer award. Campbell succeeds JQI Fellow Charles Clark, who... Continue Reading

  • Oscillating currents point to practical application for topological insulators

    Scientists studying an exotic material have found a potential application for its unusual properties, a discovery that could improve devices found in most digital electronics.Under the right conditions the material, a compound called samarium hexaboride, is a topological insulator—something that conducts electricity on its surface but not through its interior. The first topological insulators... Continue Reading

  • Measuring the magnetization of wandering spins

    The swirling field of a magnet—rendered visible by a sprinkling of iron filings—emerges from the microscopic behavior of atoms and their electrons. In permanent magnets, neighboring atoms align and lock into place to create inseparable north and south poles. For other materials, magnetism can be induced by a field strong enough to coax atoms into alignment.In both cases, atoms are typically... Continue Reading

  • Rogue rubidium leads to atomic anomaly
    Unexpected high-energy atoms illuminate the physics of potential quantum processors

    The behavior of a few rubidium atoms in a cloud of 40,000 hardly seems important. But a handful of the tiny particles with the wrong energy may cause a cascade of effects that could impact future quantum computers. Some proposals for quantum devices use Rydberg atoms—atoms with highly excited electrons that roam far from the nucleus—because they interact strongly with each other and offer easy... Continue Reading

  • Jay Deep Sau Receives Sloan Research Fellowship

    Jay Deep Sau, an assistant professor of physics at the University of Maryland and fellow of the Joint Quantum Institute, was awarded a Sloan Research Fellowship for 2016. This award, granted by the Alfred P. Sloan Foundation, identifies 126... Continue Reading

People Profiles

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu