RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Latest News and Research

Atomic beltway could solve problems of cosmic gravity

When is a traffic jam not a traffic jam? When it's a quantum traffic jam, of course. Only in quantum physics can traffic be standing still and moving at the same time. A new theoretical paper from scientists at the National Institute of Standards and Technology (NIST) and the University of Maryland suggests that intentionally creating just such a traffic jam out of a ring of several thousand ultracold atoms could enable precise measurements of motion. If implemented with the right experimental setup, the atoms could provide a measurement of gravity, possibly even at distances as short as 10 micrometers—about a tenth of a human hair's width.Continue Reading

Artificial atoms shed light on the future of security

From credit card numbers to bank account information, we transmit sensitive digital information over the internet every day. Since the 1990s, though, researchers have known that quantum computers threaten to disrupt the security of these transactions. That’s because quantum physics predicts that these computers could do some calculations far faster than their conventional counterparts. This would let a quantum computer crack a common internet security system called public key cryptography. This system lets two computers establish private connections hidden from potential hackers. In public key cryptography, every device hands out copies of its own public key, which is a piece of digital information.  Any other device can use that public key to scramble a message and send it back to the...Continue Reading

Move over, lasers: Scientists can now create holograms using neutrons

For the first time, a team including scientists from the National Institute of Standards and Technology (NIST) and JQI have used neutron beams to create holograms of large solid objects, revealing their interior details in ways that ordinary holograms do not.Holograms—flat images that look like three-dimensional objects—owe their striking look to interfering waves. Both matter and light behave like waves at the smallest scales, and just like water waves traveling on the surface of the pond, waves of matter or light can combine to create information-rich interference patterns.Illuminating an object with a laser can create an optical hologram. But instead of merely photographing the light reflected from the...Continue Reading

L'Oréal-UNESCO award goes to former JQI student researcher

Karina Jiménez-García, a former visiting graduate student who worked with JQI Fellow Ian Spielman, was one of 30 young women scientists to receive a 2016 L'Oréal-UNESCO For Women in Science fellowship. She was selected from a pool of more than 1,000 applicants and received the award for her ongoing research on the quantum behavior of ultra-cold atoms."This is a recognition that I owe to all those that have guided and inspired me and those who have supported me throughout my professional career, especially my family," says Jiménez-García, who is currently a postdoctoral researchers at the Kastler Brossel Laboratory at the Collège de France in Paris. She plans to use the funds from the fellowship to build a handful of physics...Continue Reading

A warm welcome for Weyl physics

For decades, particle accelerators have grabbed headlines while smashing matter together at faster and faster speeds. But in recent years, alongside the progress in high-energy experiments, another realm of physics has been taking its own exciting strides forward.That realm, which researchers call condensed matter physics, studies chunks of matter moving decidedly slower than the protons in the LHC. In fact, the materials under study—typically solids or liquids—are usually sitting still. That doesn't make them boring, though. Their calm appearance can often hide exotic physics that arises from their microscopic activity."In condensed matter physics, the energy scales are much lower," says Pallab Goswami, a postdoctoral researcher at JQI and the ...Continue Reading

Physics Nobel honors underpinnings of exotic matter

A trio of researchers who laid the foundation for understanding numerous exotic phases of matter have split the 2016 Nobel Prize in Physics.The Royal Swedish Academy of Sciences awarded the prize "for theoretical discoveries of topological phase transitions and topological phases of matter" to three laureates: David Thouless of the University of Washington, Duncan Haldane of Princeton University and Michael Kosterlitz of Brown University."It is a very, very well-deserved prize," says JQI Fellow and CMTC Director Sankar Das Sarma. "This work led to an extremely exciting area and that excitement is still growing."The research behind the prize "illustrates, in a very nice way, the interplay between physics and mathematics," Thors Hans Hansson...Continue Reading

In memoriam: Physicist Deborah Jin (1968-2016)

The JQI community joins our colleagues at JILA and NIST in mourning the loss of Deborah Jin, a pioneer in the physics of ultracold gases, an area of research that joins condensed matter and atomic physics. Jin was an outstanding scientist, colleague, and mentor. To learn more about Jin's life, research and accomplishments, please read the remembrances by JILA and NIST.For those who wish to share their memories of Deborah Jin, JILA invites you to post them here.Continue Reading

JQI welcomes new Fellow Maissam Barkeshli

This Fall, theoretical condensed matter physicist Maissam Barkeshli joined the UMD Department of Physics as an Assistant Professor and a JQI Fellow. In 2010 he received a PhD from MIT under the supervision of Xiao-Gang Wen. Since then he has been a Simons Postdoctoral Fellow at Stanford University (2010-2013) and a postdoctoral researcher at Microsoft's Station Q, located at UC Santa Barbara (2013-2016).Continue Reading

Latest News and Research

  • Atomic beltway could solve problems of cosmic gravity

    When is a traffic jam not a traffic jam? When it's a quantum traffic jam, of course. Only in quantum physics can traffic be standing still and moving at the same time. A new theoretical paper from scientists at the National Institute of Standards and Technology (NIST) and the University of Maryland suggests that intentionally creating just such a traffic jam out of a ring of several thousand... Continue Reading

  • Artificial atoms shed light on the future of security

    From credit card numbers to bank account information, we transmit sensitive digital information over the internet every day. Since the 1990s, though, researchers have known that quantum computers threaten to disrupt the security of these transactions. That’s because quantum physics predicts that these computers could do some calculations far faster than their conventional counterparts. This... Continue Reading

  • Move over, lasers: Scientists can now create holograms using neutrons

    For the first time, a team including scientists from the National Institute of Standards and Technology (NIST) and JQI have used neutron beams to create holograms of large solid objects, revealing their interior details in ways that ordinary holograms do not.Holograms—flat images that look like three-dimensional objects—owe their striking look to interfering waves. Both matter and light behave... Continue Reading

  • L'Oréal-UNESCO award goes to former JQI student researcher

    Karina Jiménez-García, a former visiting graduate student who worked with JQI Fellow Ian Spielman, was one of 30 young women scientists to receive a 2016 L'Oréal-UNESCO For Women in Science fellowship. She was selected from a pool of more than 1,000 applicants and received the award for her ongoing research on the quantum behavior of... Continue Reading

  • A warm welcome for Weyl physics

    For decades, particle accelerators have grabbed headlines while smashing matter together at faster and faster speeds. But in recent years, alongside the progress in high-energy experiments, another realm of physics has been taking its own exciting strides forward.That realm, which researchers call condensed matter physics, studies chunks of matter moving decidedly slower than the protons in... Continue Reading

  • Physics Nobel honors underpinnings of exotic matter

    A trio of researchers who laid the foundation for understanding numerous exotic phases of matter have split the 2016 Nobel Prize in Physics.The Royal Swedish Academy of Sciences awarded the prize "for theoretical discoveries of topological phase transitions and topological phases of matter" to three laureates: David Thouless of the University of Washington, Duncan Haldane of Princeton... Continue Reading

  • In memoriam: Physicist Deborah Jin (1968-2016)

    The JQI community joins our colleagues at JILA and NIST in mourning the loss of Deborah Jin, a pioneer in the physics of ultracold gases, an area of research that joins condensed matter and atomic physics. Jin was an outstanding scientist, colleague, and mentor. To learn more about Jin's life, research and accomplishments, please read the remembrances by ... Continue Reading

  • JQI welcomes new Fellow Maissam Barkeshli

    This Fall, theoretical condensed matter physicist Maissam Barkeshli joined the UMD Department of Physics as an Assistant Professor and a JQI Fellow. In 2010 he received a PhD from MIT under the supervision of Xiao-Gang Wen. Since then he has been a Simons Postdoctoral Fellow at Stanford University (2010-2013) and a postdoctoral researcher at Microsoft's Station Q, located at UC Santa Barbara (... Continue Reading

People Profiles

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu