More News
Cool Calculations for Cold Atoms
Onchip Topological Light
Spin Diagnostics
HighlyCharged Ions
SuperconductingSilicon Qubits
Advanced Light
Frontiers of Cold Matter
Stimulated Mutual Annihilation
JQI Fellow Gretchen Campbell among PECASE awardees
Cold Chaos
UpConverted Radio
How do you build a largescale quantum computer?
Upcoming Events
People News
Outreach
Recent Publications
Twitter Updates

Mohammad Hafezi writes Viewpoint essay in PRX about stronglyinteracting photons t.co/YaCrHOHjAq

New universal theory of 3atom states at ultracold temps t.co/SbGdW5u57s

JQI topological light work gets "Viewpoint" treatment in PRL: t.co/6i6fXNuwOP
People Profiles

David Hucul
David Hucul is a graduate student in Professor Chris Monroe's trapped ion quantum information lab at the Joint Quantum Institute. He earned undergraduate degrees in physics and chemistry in 2006 from the University of Michigan and a master's degree at MIT in 2009 under Wolfgang Ketterle. David started his PhD work with Chris Monroe in 2009 working on using frequency combs to entangle trapped ions. He now works on entangling trapped atoms within and between ion traps using both phonons and photons to create quantum networks.
David became interested in atomic physics by accident, when he enjoyed an advanced chemistry course about spectroscopy and realized it was really physics. His first physics seminar was given by Chris Monroe, who was then a professor at Michigan. This made him a physicist.
He expects to finish his graduate studies sometime in 2015 and hopes to find a postdoctoral position after that.

Alexey V. Gorshkov
Alexey Gorshkov is a JQI fellow and theoretical physicist at NIST. He grew up in Moscow until his parents brought him to Boston when he was in 10th grade. In high school, he was good at math, so that's what he was planning to do in college, but then math ended up being too dry. Physics offered a perfect alternative since it involved lots of interesting mathematics and grappled with problems related to real life.
He attended Harvard for his undergraduate and graduate degrees, obtaining a physics PhD in 2010 studying under Mikhail Lukin. After that he was a postdoctoral fellow at Caltech, working with John Preskill. He won numerous university teaching and research awards during these years.
His research is at the intersection of AMO physics, condensed matter physics, and quantum information science. He has authored dozens of papers and has a patent entitled: “Scalable Room Temperature Quantum Information Processor.”

James R. Williams
James R. Williams is the newest JQI fellow, having arrived in March 2014. He is an assistant professor of physics at the University of Maryland, and his chief area of research is experimental condensed matter physics. Specifically, he specializes in understanding why certain one and twodimensional materials (e.g. topological insulators, graphene) depart from normal conductivity provided by free electrons.
Jimmy, as he likes to be called, almost didn’t go to college. All he wanted to do was work on cars. His mother forced him to apply to one college, so he choose Santa Clara University where he previously attended a basketball camp. He majored in engineering, but his favorite courses involved physics, so he changed direction again. This is how he arrived at his chosen area of research.
Eventually he got a PhD from Harvard University in 2009 on the subject of grapheme, while studying under Charles M. Marcus. He was then a postdoctoral fellow at Stanford before coming to Maryland.

Crystal Senko
Crystal Senko is a graduate student in Chris Monroe's ion trapping group. While in the group she has focused on ultrafast spin manipulation as well as quantum simulation of magnetism. Senko is an undergraduate alumni of Duke University, where she worked with Dan Gauthier on magnetooptical trapping using distributed feedback lasers.

Stephen Powell
Stephen Powell, a former JQI postdoctoral fellow at CMTC, now works at the Nordic Institute of Theoretical Physics or Nordita in Stockholm, Sweden. His research in the group of Sankar Das Sarma centered around strongly correlated systems with a specific focus on frustrated magnetism and ultracold gases. At Nordita, he will continue this line of research, which is at the meeting point of condensed matter and atomic physics. In talking of his postdoctoral experience he says, “Something I've particularly enjoyed about being at JQI is having close contact with various experimental groups here.”

Phil Richerme
Phil Richerme is a postdoc in Chris Monroe's Trapped Ion Quantum Information Group. He studies quantum magnetism using a wellcontrolled and wellisolated system of atomic ion spins, realizing Feynman's original proposal for a quantum simulator. These experiments probe the ground state and dynamical evolution of interacting spin systems, which are difficult (or impossible) for classical computers to calculate for even a few dozen spins. Phil received his Ph.D. from Harvard in 2012, working with Gerald Gabrielse and the ATRAP collaboration at CERN to trap antihydrogen atoms for sensitive tests of CPT symmetry.
Subscribe to A Quantum Bit
Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...
Sign Up Now
Sign up to receive A Quantum Bit in your email!
Have an idea for A Quantum Bit? Submit your suggestions to jqicomm@umd.edu