RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

More News

July 17, 2014 | Research News

Highly-Charged Ions

The world is mostly neutral. That is, most of the atoms in our environment are electrically neutral. The number of electrons in the outer parts of atoms equals the number of protons at the centers of atoms. As one or more electrons are plucked away from the atoms, the remaining electrons feel a much stronger positive pull from the nucleus.

July 2, 2014 | Research News

Superconducting-Silicon Qubits

Theorists propose a way to make superconducting quantum devices such as Josephson junctions and qubits, atom-by-atom, inside a silicon crystal.

May 27, 2014 | Research News

Advanced Light

Michael Lewis’s bestselling book Flash Boys describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don’t need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streaming, we want things fast.

May 23, 2014 | People News

Frontiers of Cold Matter

JQI fellow Paul Julienne has recently retired from NIST but continues to perform high-level theoretical research in the subject he helped to create---ultracold matter.  In honor of his birthday, a meeting called Frontiers of Cold Matter is being held May 29-30 at JQI.

May 5, 2014 | Research News

Stimulated Mutual Annihilation

Twenty years ago, Philip Platzman and Allen Mills, Jr. at Bell Laboratories proposed that a gamma-ray laser could be made from a Bose-Einstein condensate (BEC) of positronium, the simplest atom made of both matter and antimatter (1).

April 16, 2014 | People News

JQI Fellow Gretchen Campbell among PECASE awardees

Release from NIST Tech Beat, April 15, 2014

Three National Institute of Standards and Technology (NIST) researchers were among those honored April 14, 2014, at a White House reception as winners of Presidential Early Career Awards. The award is the highest honor bestowed by the United States government on science and engineering professionals in the early stages of their independent research careers.

March 19, 2014 | Research News

Cold Chaos

At sub-micro-kelvin temperatures atoms or molecules move so slowly that it is better to think of them as spread-out, wavelike things a micron or more across, many times larger than any putative bond length (typically sub-nanometer in size) that would characterize bound molecules. A new experiment conducted at the University of Innsbruck in Austria adds a new twist to this picture.

March 6, 2014 | Research News

Up-Converted Radio

Ever worry about losing your mobile-phone reception? The problem is a weak microwave signal. A new approach to this important problem provides a clean, all-optical detection of microwaves and radiowaves featuring noise mitigation a thousand times better than existing methods.

February 25, 2014 | PFC | Research News

How do you build a large-scale quantum computer?

Physicists led by ion-trapper Christopher Monroe at the JQI have proposed a modular quantum computer architecture that promises scalability to much larger numbers of qubits. The components of this architecture have individually been tested and are available, making it a promising approach. In the paper, the authors present expected performance and scaling calculations, demonstrating that their architecture is not only viable, but in some ways, preferable when compared to related schemes.

February 14, 2014 | Research News

Solitary Confinement

Atomic nuclei are governed by laws quite distinct from those that regulate atomic electrons, which constitute the outer part of atoms and which are immediately responsible for light, chemistry and thus life. Yet there are sporadic regions of contact between these disparate realms. JQI Adjunct Fellow Marianna Safronova and her collaborators have been exploring one area of nuclear-atomic overlap for the isotope thorium-229.

JQI at APS
February 13, 2014 | People News | Research News

JQI at APS

The following papers with JQI authors will be presented at the March meeting of the American Physical Society, being held March 2-7, 2014 in Denver.

January 2, 2014 | Research News

The Entropy of Nations

Adam Smith showed in his book "The Wealth of Nations" that a sort of "hidden hand" was at work in distributing income among the population. A new JQI study shows that distribution of energy among nations is thermodynamic in nature.

People News

Outreach

PFC and JQI researchers engage the public in quantum research. Click here to request a visit from one of our scientists!

People Profiles

  • Alexey V. Gorshkov

    Alexey Gorshkov is a JQI fellow and theoretical physicist at NIST. He grew up in Moscow until his parents brought him to Boston when he was in 10th grade. In high school, he was good at math, so that's what he was planning to do in college, but then math ended up being too dry. Physics offered a perfect alternative since it involved lots of interesting mathematics and grappled with problems related to real life.

    He attended Harvard for his undergraduate and graduate degrees, obtaining a physics PhD in 2010 studying under Mikhail Lukin. After that he was a postdoctoral fellow at Caltech, working with John Preskill. He won numerous university teaching and research awards during these years.

    His research is at the intersection of AMO physics, condensed matter physics, and quantum information science. He has authored dozens of papers and has a patent entitled: “Scalable Room Temperature Quantum Information Processor.”

  • Steven Olmshenck

    JQI alumnus Steven Olmshenck, JQI

    NRC postdoctoral fellow Steven Olmschenk will be joining the faculty at Denison University located in Granville, Ohio. Steve was a graduate student in Chris Monroe’s Trapped Ion Quantum Information group. For the last few years he has been a postdoc in the NIST Laser Cooling and Trapping Group. While at NIST he has worked on Trey Porto’s double-well optical lattice experiment. Upon moving to Dension he plans to build an ion trapping experiment. 

  • Phil Richerme

    Phil Richerme is a postdoc in Chris Monroe's Trapped Ion Quantum Information Group. He studies quantum magnetism using a well-controlled and well-isolated system of atomic ion spins, realizing Feynman's original proposal for a quantum simulator. These experiments probe the ground state and dynamical evolution of interacting spin systems, which are difficult (or impossible) for classical computers to calculate for even a few dozen spins. Phil received his Ph.D. from Harvard in 2012, working with Gerald Gabrielse and the ATRAP collaboration at CERN to trap antihydrogen atoms for sensitive tests of CPT symmetry.

  • James R. Williams

    James R. Williams is the newest JQI fellow, having arrived in March 2014. He is an assistant professor of physics at the University of Maryland, and his chief area of research is experimental condensed matter physics. Specifically, he specializes in understanding why certain one and two-dimensional materials (e.g. topological insulators, graphene) depart from normal conductivity provided by free electrons.

    Jimmy, as he likes to be called, almost didn’t go to college. All he wanted to do was work on cars. His mother forced him to apply to one college, so he choose Santa Clara University where he previously attended a basketball camp. He majored in engineering, but his favorite courses involved physics, so he changed direction again. This is how he arrived at his chosen area of research.

    Eventually he got a PhD from Harvard University in 2009 on the subject of grapheme, while studying under Charles M. Marcus. He was then a postdoctoral fellow at Stanford before coming to Maryland.

  • David Hucul

    David Hucul

    David Hucul is a graduate student in Professor Chris Monroe's trapped ion quantum information lab at the Joint Quantum Institute. He earned undergraduate degrees in physics and chemistry in 2006 from the University of Michigan and a master's degree at MIT in 2009 under Wolfgang Ketterle. David started his PhD work with Chris Monroe in 2009 working on using frequency combs to entangle trapped ions. He now works on entangling trapped atoms within and between ion traps using both phonons and photons to create quantum networks.

    David became interested in atomic physics by accident, when he enjoyed an advanced chemistry course about spectroscopy and realized it was really physics. His first physics seminar was given by Chris Monroe, who was then a professor at Michigan. This made him a physicist. 

    He expects to finish his graduate studies sometime in 2015 and hopes to find a postdoctoral position after that.

  • Stephen Powell

    JQI alumnus Stephen Powell, JQI

    Stephen Powell, a former JQI postdoctoral fellow at CMTC, now works at the Nordic Institute of Theoretical Physics or Nordita in Stockholm, Sweden. His research in the group of Sankar Das Sarma centered around strongly correlated systems with a specific focus on frustrated magnetism and ultracold gases. At Nordita, he will continue this line of research, which is at the meeting point of condensed matter and atomic physics. He will help organize the Nordita program “Pushing the boundaries with cold atoms,” to be held in early 2013. In talking of his postdoctoral experience he says, “Something I've particularly enjoyed about being at JQI is having close contact with various experimental groups here.”

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu