RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Latest News and Research

The Nobel Prize: A LIGO Q&A
A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself. Today, Rainer Weiss, Barry C. Barish and Kip S. Thorne were awarded the 2017 Nobel Prize in Physics for decades of work that culminated in the detection of gravitational waves in 2015—and several times since—by the Laser Interferometer Gravitational-Wave Observatory (LIGO). Emily and Chris sat down with UMD physics professor Peter Shawhan, a member of the LIGO collaboration, to learn... Continue Reading
Turning ions into quantum cats
A new technique spreads single-ion "cat states" 300 nanometers apart.

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.
Such "cat states" have found many homes, promising more sensitive quantum measurements and acting as the basis for quantum error-correcting codes—a necessary component for future error-prone quantum computers.With these goals in mind, some researchers are eager to create better cat states with single ions. But, so far, standard techniques have imposed limits... Continue Reading

Sensing atoms caught in ripples of light

Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.Physicists use fibers, too, particularly those who study atomic physics and quantum information science. Aside from shuttling laser light around, fibers can be used to create light traps for super-chilled atoms. Captured atoms can interact more strongly with light, much more so than if they were moving... Continue Reading

UMD to host 200 scientists for quantum error correction conference

Nearly 200 scientists and theorists from around the world will descend on the University of Maryland campus next week for the 4th International Conference on Quantum Error Correction (QEC17), the world’s premier scientific meeting focused on the protection of quantum computers from their hostile surroundings.This year’s conference, which will be held Sept. 11–15, is organized by researchers from the Joint Center for Quantum Information and Computer Science (QuICS) and Georgia Tech.Quantum error correction is a suite of techniques for maintaining stable qubits, the quantum computer analog of the bits in ordinary computers. Similar to the way that conventional error correction defends against... Continue Reading

Long-range interactions leave a quantum reminder

Given enough time, a forgotten cup of coffee will lose its appeal and cool to room temperature. One way of telling this tepid tale involves a stupendous number of coffee molecules colliding like billiard balls with themselves and colder molecules in the air above. Those constant collisions siphon energy away from the coffee, bit by bit, in a process that physicists call thermalization.But this story doesn’t mention quantum physics, and scientists think that thermalization must ultimately have a precursor at the quantum level. Recently, scientists have sketched out some of the ways that small quantum systems thermalize, sometimes even when... Continue Reading

Simulating the quantum world with electron traps
Researchers exert precise control over individual electrons to create an artificial material.

Quantum behavior plays a crucial role in novel and emergent material properties, such as superconductivity and magnetism. Unfortunately, it is still impossible to calculate the underlying quantum behavior, let alone fully understand it. Scientists of QuTech, the Kavli Institute of Nanoscience in Delft and TNO, in collaboration with ETH Zurich and the University of Maryland, have now succeeded in building an "artificial material" that mimics this type of quantum behavior on a small scale. In doing so, they have laid the foundations for new insights and potential applications. Their work is published today in Nature. Continue Reading

Atomic cousins team up in early quantum networking node
Researchers use different ion species for storage and communication.

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with JQI Fellow Christopher Monroe, are pursuing the second goal, attempting to wire up isolated modules of trapped atomic ions with light. They imagine many modules, each with a hundred or so ions, linked together to form a... Continue Reading

Labs IRL: Boxing up atomic ions
JQI Podcast Episode 14
What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of Labs in Real Life—Labs IRL, for short—a recurring segment on Relatively Certain that will explore what it's actually like to work in a university lab. (The work in this lab... Continue Reading

Latest News and Research

  • The Nobel Prize: A LIGO Q&A
    A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself. Today, Rainer Weiss, Barry C. Barish and Kip S. Thorne were awarded the 2017 Nobel Prize in Physics for decades of work that culminated in the detection... Continue Reading
  • Turning ions into quantum cats
    A new technique spreads single-ion "cat states" 300 nanometers apart.

    In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.
Such "cat states" have found many homes, promising more sensitive quantum... Continue Reading

  • Sensing atoms caught in ripples of light

    Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.Physicists use fibers, too... Continue Reading

  • UMD to host 200 scientists for quantum error correction conference

    Nearly 200 scientists and theorists from around the world will descend on the University of Maryland campus next week for the 4th International Conference on Quantum Error Correction (QEC17), the world’s premier scientific meeting focused on the protection of quantum computers from their hostile surroundings.This year’s conference, which will be held... Continue Reading

  • Long-range interactions leave a quantum reminder

    Given enough time, a forgotten cup of coffee will lose its appeal and cool to room temperature. One way of telling this tepid tale involves a stupendous number of coffee molecules colliding like billiard balls with themselves and colder molecules in the air above. Those constant collisions siphon energy away from the coffee, bit by bit, in a process that physicists call thermalization.But this... Continue Reading

  • Simulating the quantum world with electron traps
    Researchers exert precise control over individual electrons to create an artificial material.

    Quantum behavior plays a crucial role in novel and emergent material properties, such as superconductivity and magnetism. Unfortunately, it is still impossible to calculate the underlying quantum behavior, let alone fully understand it. Scientists of QuTech, the Kavli Institute of Nanoscience in Delft and TNO, in collaboration with ETH Zurich and the University of Maryland, have now succeeded... Continue Reading

  • Atomic cousins team up in early quantum networking node
    Researchers use different ion species for storage and communication.

    Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with... Continue Reading

  • Labs IRL: Boxing up atomic ions
    JQI Podcast Episode 14
    What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of... Continue Reading

People Profiles